Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

8. Optimal Detection for Additive Noise Channels
1-D Case

Office Hours:

Check Google Calendar on the course website.

Dr.Prapun's Office:

6th floor of Sirindhralai building, BKD

Elements of digital commu. sys.

Digital Modulation/Demodulation

Digital Modem: Ex 1

Digital Modem: Ex 2

Analysis of Digital Modem

M possible messages requires

M possibilities for S(t):

$$\{s_1(t), s_2(t), \ldots, s_M(t)\}$$

Analysis of Digital Modem

can be visualized in the form of signal constellation

Each vector contain *K* random variables.

Analysis of Digital Modem: 1D

R = S + NContinuous RV
Discretes RV

pmf of the "message"

$$S_{1}(t) S_{2}(t) S_{3}(t)$$

$$S_{M}(t)$$

Prior Probabilities:
$$p_j = P[S(t) = s_j(t)] = P[S = s^{(j)}] \equiv p_S(s^{(j)})$$

Energy: $\mathbf{E}_{j} = \left\| s_{j}(t) \right\|^{2} = \left\langle s_{j}(t), s_{j}(t) \right\rangle = \left| s^{(j)} \right|^{2}$

Average Energy (per Symbol): $E_s = \sum_{j=1}^{M} p_j E_j$

Average Energy (per Bit): $E_b = \frac{1}{\log_2 M} E_s$

Analysis of Digital Modem: MAP

- Model: R = S + N
 - We know the pmf $p_S(s)$ of S and the pdf $f_N(n)$ of N.

- We assume that *S* and *N* are independent.
- **Goal**: Use the (observed) value of *R* to infer back to the value of *S* that was transmitted.
 - Note that once we recover the value of S, then we can map this back to the corresponding waveform S(t), and consequently, recover the corresponding bit block \underline{b} .

Review: MAP decoder

- **3.41.** A recipe for finding the MAP decoder (optimal decoder) and its corresponding error probability:
 - (a) Find the **P** matrix by scaling elements in each row of the **Q** matrix by their corresponding prior probability p(x).
 - (b) Select (by circling) the maximum value in each column (for each value of y) in the **P** matrix.
 - If there are multiple max values in a column, select one. This won't affect the optimality of your answer.
 - (i) The corresponding x value is the value of \hat{x} for that y.
 - (ii) The sum of the selected values from the **P** matrix is $P(\mathcal{C})$.
 - (c) $P(\mathcal{E}) = 1 P(\mathcal{C})$.

Review: MAP decoder

Example 3.43. Find the MAP decoder and its corresponding error probability for the DMC channel whose \mathbf{Q} matrix is given by

and $\underline{\mathbf{p}} = [0.6, 0.4]$. Note that the DMC is the same as in Example 3.26 but the input probabilities are different.

$$\hat{z}_{MAP}(y) = \begin{cases} 0, & y = 1, 3, \\ 1, & y = 2. \end{cases}$$
 P/S

$$P(C) = 0.5 + 0.16 + 0.18$$

= 0.64
 $P(E) = 1 - 0.64 = 0.36$

Analysis of Digital Modem: MAP

- Model: R = S + N
 - We know the pmf $p_S(s)$ of S and the pdf $f_N(n)$ of N.

- We assume that *S* and *N* are independent.
- Suppose, at the receiver, we get R = r.
- Optimal (MAP) Detector:

$$\hat{s}_{MAP}(r) = \underset{s \in \{s^{(1)}, s^{(2)}, \dots, s^{(M)}\}}{\arg \max} p_s(s) f_N(r - s)$$

8.8. Graphically, here are the steps to find the MAP detector:

- (a) Plot $p_1 f_N(r s^{(1)}), p_2 f_N(r s^{(2)}), \dots, p_M f_N(r s^{(M)}).$
- (b) Select the maximum plot for each (observed) r value.
 - If there are multiple max values, select any.
 - The corresponding $s^{(j)}$ is the value of \hat{s}_{MAP} at r.

$$P(\mathcal{C}) = (p_1 - A_1) + (p_2 - A_2)$$

$$= 1 - (A_1 + A_2)$$

$$P(\mathcal{E}) = 1 - P(\mathcal{C})$$

$$= A_1 + A_2$$

$$P(C) = (p_1 - A_1) + (p_2 - A_2)$$

$$= 1 - (A_1 + A_2)$$

$$P(C) = 1 - P(C)$$

$$= A_1 + A_2$$

$$P(C) = (p_1 - A_1) + (p_2 - A_2)$$

$$= 1 - (A_1 + A_2)$$

$$P(E) = 1 - P(C)$$

$$= A_1 + A_2$$

$$= \frac{1}{2} \times 2 \times 0.105$$

$$= 0.105$$

Similar Triangles

Similar Triangles

$$\bullet \ \frac{h_1}{b_1} = \frac{y}{d_1}$$

$$\bullet \ \frac{h_2}{b_2} = \frac{y}{d_2}$$

