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Digital Modulation/Demodulation
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Digital Modem: Ex 1
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Digital Modem: Ex 2
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Analysis of Digital Modem

Transmitted waveform Received waveform
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Analysis of Digital Modem

l l{sl(t)ISZ(t)) "'JSM(t)}

Waveform Channel: 2 (1) = S(t) + N(t) Find orthonormal basis

(possibly by GSOP):
(S(), s () {P1(6), P2 (1), ..., P (1)}
<<5(t).;¢>2(t) Ex.
A § K = 1: PAM,ASK
(N, 61 () B
<§§E2$§Eg§> <(N(t),:¢2(t))> K = 2: PSK, QAM
(R0, b (0)) | (N(®, $xc(0))
v
—_— —_— —_—
Vector Channel: R=S+4+N
R.S N (1) (2 (M
R, S and N are all E{S(),S(),...,S( )}

random vectors.

Each vector contain K can be visualized in the form of signal constellation

random variables.




Analysis of Digital Modem:l{l_[)1

[R=g+q |
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Prior Probabilities: p; = P| S(t)=s,(t) |= p[g _ () ]E . (S(j))
Energy: €, =[s, (O =(5,(1)5,(0) =[] el s
Average Energy (per Symbol): E_ = i p,E,

Average Energy (per Bit):  E, = 1 E.
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Analysis of Digital Modem: MAP

* Model:R =S + N | (s
We know the pmf pgs(s) of S %

and the pdf [y (n) of N. 9

N

R )

)

We assume that S and N are independent.

® Goal: Use the (observed) value of R to infer back to the

value of S that was transmitted.

Note that once we recover the value of §, then we can map this

back to the corresponding waveform S (t), and consequently,

recover the corresponding bit block b.

Digital
Modulator Demodulator
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[ECS452 2018 Section 3.3 p. 44-45]

Review: MAP decoder

3.41. A recipe for finding the MAP decoder (optimal decoder) and its
corresponding error probability:

(a) Find the P matrix by scaling elements in each row of the Q matrix by
their corresponding prior probability p(x).

(b) Select (by circling) the maximum value in each column (for each value
of ) in the P matrix.

e If there are multiple max values in a column, select one.
This won't affect the optimality of your answer.

(i) The corresponding x value is the value of & for that y.

(ii) The sum of the selected values from the P matrix is P(C).

(c) P(§)=1— P(C).
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[ECS452 2018 Section 3.3 p. 45]

Review: MAP decoder

Example 3.43. Find the MAP decoder and its corresponding error proba-
bility for the DMC channel whose Q matrix is given by

281 > | ®art?
zyg 1 2 3 1 =
=0 [05 02 03 0'2.] ﬂ
1 0% fid 03 “_"‘T_., o.12 (e-16 Ol?. 2. j
' ' 3 O
andp = 0.6, 0.4]) Note that the DMC is the same as in Example 3.26| but
the mput propabilities are different.
| P(C)=0-310:-IL+ ©.1%
A u.a' y: 1"'5.) -
2 iy) = i . ]
PARE Y el P[E) =1-0.bw = 0.36
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Analysis of Digital Modem: MAP

'Model:[ =S+N] ’ S A
We know the pmf pg(s) of S %
and the pdf fy (n) of N.

o N y

We assume that S and N are independent.

® Suppose, at the receiver, we get R=r.

® Optimal (MAP) Detector:
EMAP( )= argmax ps(s)fy(r — S}

se{s(W) s@) (M)}

8.8. Graphically, here are the steps to find the MAP detector:

(a) Plot pyfa(r —s), pafa(r —s@), ., parfu(r — s0).
(b) Select the maximum plot for each (observed) r value.

e [f there are multiple max values, select any.

e The corresponding sU) is the value of §yap at 7.




Error Probability

Ex. Binary PAM under “Triangular” Noise
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Error Probability

Ex. Binary PAM under “Triangular” Noise
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Ex. Binary PAM under “Triangular” Noise
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